Pressure

Pressure is defined as the normal force acting per unit area.

$$P = \frac{F}{A}$$

P: Pressure (Pa or Nm⁻²)

$$\frac{1}{4}$$
 F: Force (N)
A: Area (m²)

$$1Pa = 1 Nm^{-2}$$

High pressure is achieved by applying a large force or reducing the contact surface area.

The pressure acting on a cube resting on its side is directly proportional to its length.

The amount of pressure determines the ability to penetrate another surface.

Everyday Examples of Pressure

High Pressure	Low Pressure
Cutting using a sharp	Tractor using large wheels to
knife is easier due to its	prevent sinking into soft
smaller contact area.	ground.
Pushing a thumbtack	Eskimo wears snowshoes to
with its sharp end	distribute his weight over a
towards the board to	larger area, allowing him to
increase pressure.	walk over snow without sinking
Giving a patient an	Carrying a plastic bag with a
injection using a sharp	thicker handle to reduce
needle.	pressure on hands.

Liquid Pressure

Pressure in a liquid is proportional to the **density**, **depth** of the liquid and gravitational field strength. It is independent of the volume and crosssectional area of the liquid.

$$P = h
ho g$$
 P: Pressure (Pa)
h: Vertical height (m)
 ho : Density (kgm⁻³)

g: Gravitational field strength (Nkg⁻¹)

PRESSURE

Barometer

A **barometer** is used to measure atmospheric pressure.

Atmospheric pressure is pressure exerted due to the weight of the air molecules per unit surface area above that point.

1 atmosphere (atm) is equivalent to 1.013×10^5 Pa, or 76 cmHg at sea level.

For a mercury barometer, the unit of measurement is mmHg or cmHg.

10 m of water height is equivalent to 1 atm.

Vacuum h = 76 cm

Converting cmHg to Pa

$$P = 76 \text{ cmHg}$$

= $(0.76 \text{ m})(13600 \text{ kgm}^{-3})(10 \text{ Nkg}^{-1})$

 $= 1.03 \times 10^5 \text{ Pa (3sf)}$

Hydraulic Press

In a **hydraulic press**, the liquid pressure is transmitted equally to every part of the liquid. (Pascal's Principle)

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$
 F: Piston Force (N)
A: Piston Area (m²)

Gas Pressure

In **Boyle's Law**, the volume of a fixed mass of gas is inversely proportional to the pressure applied to the gas, provided that the temperature and mass of gas remains constant.

$$P_1V_1=P_2V_2$$
 P: Pressure (Pa) V: Volume (m³)

Pressure, P

Manometer

A **manometer** is used to measure differences in gas or liquid pressures.

=73 cmHg